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FOREWORD

This report was prepared by the Los Angeles Division
of Science Applications, Incorporated, Los Angeles,
California for the Vehicle Dynamics Division of the
Air Force Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio. The research was conducted
under Project 1370, "Dynamic Problems in Flight
Vehicles," Task 137004, "Design Analysis," Contract
F33615-74-C-3094. James J. Olsen and later
Lt. William L. Holman of AFFDL/FYS were the Air Force
task engineers.

R. M. Traci was the principal investigator for
the study. J. L. Farr, Jr. contributed to the development
for the numerical solution method and developed the
necessary computer programs. Consultant E. D. Albano
contributed to and guided the research.

The authors submitted this report in July 1975
for publication as an AFFDL technical report to cover
research performed from June 1974 through June 1975.

Other reports prepared and submitted under the
aforementioned contract are: AFFDL-TR-74-37, "Small
Disturbance Transonic Flows about Oscillating Airfoils,"
AFFDL-TR-74-135, "Computer Programs for Calculating
Small Disturbance Transonic Flows about Oscillating
Airfoils," and AFFDL-TR-75-103, "Computer Programs for
Calculating Small Disturbance Transonic Flows about
Oscillating Planar Wings."
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1.0 INTRODUCTION

A basic reason for studying unsteady flows is the pre-
diction of the effect of unsteady aerodynamic forces on a
flight vehicle. The transcnic speed regime is particularly
important in this respect for the same physical reason that
drag and other steady forces are generally higher than in sub-
sonic or supersonic speed regimes. Another characteristic of
transonic flows is the potentially large phase lag between
boundary motion and induced unsteady pressures. These effects
tend to increase the likelihood of aeroelastic instabilities,
so that transonic speeds are most critical for aircraft flut-
i ter. There is a clear and present need for accurate and effi-
] cient predictive techniques for unsteady transonic airloads.
This need motivated the investigation of the perturbation me-
thod for transonic flows about_oscillating airfoils presented
in this and a previous report. The present report contains
a potpourri of analyses, numerical tests and calculated re-
sults which generalize, verify and exercise the method intro-
duced in Reference 1. By way of introduction, the following
description of the nature of unsteady transonic flows and the
past and present attempts at describing the inherently nonlin-
ear processes is presented.

The physical mechanism underlying the build-up of pres-
sure amplitudes and phase lags has been described by Landahl?2
by considering the propagation of a low-frequency acoustic dis-
turbance. The upstream-facing portion of the disturbance (the
"receding wave") travels at a rate which is essentially the
difference between freestream speed and the sound speed. 1In a
transonic flow, this speed is so slow that acoustic disturbances
may interact and build up to a finite amplitude. In order to
describe the phenomena, the steady or low frequency unsteady
equations must necessarily be nonlinear, thereby providing the
essential difficulty in the analysis of transonic flow. It
has been pointed out by Rott3, Landahl? and others, however,
that the unsteady equations may be linearized and uncoupled
from the mean steady flow for high frequency disturbances near
Mach 1. These so-called "sonic theories" have been developed
for both_two and three dimensional wings by a number of inves-
tigators3' '3, Many of these classical studies of the high
frequency equation are summarized in Landahl's monograph4. It
is often the case, however, that the nonlinear low frequency
regime is of greater practical importance for aircraft flutter.
Fortunately, a linear system can be recovered for low frequency
transonic flow, as demonstrated by Landahl4, by expanding the
unsteady flow as a small perturbation about the nonuniform




steady flow. The linear equation remains quite formidable
since various coefficients are functions of the nonlinear
steady flow so that numerical solution procedures, of which
the present work is one, are indicated.

Analytical or semi-analytical approaches to the solu-
tion of the unsteady flow, based on this linearization about
the steady flow, have recently been presented. Stahara and
Spreiter6 and Isogai7 have applied the "local linearization"
method, developed for steady, near sonic flows, to the nonuni-
form unsteady system. The approach is promising but its ap-
lication to general supercritical flows is guestionable.

Of more practical interest for general applications are
the numerical approaches which have become highly developed
for steady flows in recent years. Two basic finite difference
techniques have been used; known generally as time dependent
methods and relaxation methods. The time dependent methods
solve the complete set of conservation equations or the un-
steady full potential equation by forward differencing in time.
This approach has been applied to the calculation of steady
flows as the steady limit of the time dependent solution. The
method can handle mixed flows _and shocks within the accuracy
of the finite difference mesh®, Time dependent calculations
of flows about two dimensional airfoils oscillating at super-
critical Mach numbers have been reported by Magnus and Yoshihara
and Beam and Warminglo. Such calculations are very important
as they involve no inherent limiting assumption but they are

quite expensive computer timewise. Ballhaus and Lomaxll nhave
presented time accurate solutions of the low frequency unsteady
small distggbance potential equation. Recent applications of

the method indicate that it could be a very efficient approach
to the oscillating airfoil problem. 4

Another promising technique for both steady and unsteady
flows, which must be considered in a separate classification,
is the finite element method. The method has been agglied to
the oscillating airfoil problem by Bratanow and Ecer for com-
pressible flow and recently by Chan and Brashearsl4 for tran-
sonic flows.

The other class of numerical techniques, which have received
wide application to steady transonic flowsl5,16, are the relax-
ation methods. Ehlersl? and the present authorsl have reported
the application of relaxation methods to unsteady transonic flows
about harmonically oscillating airfoils. Both methods are ap-
parently similar except that the work presented here concentrates
in a consistent manner, from formulation through results, on the
low frequency regime. In the approach, the flow is considered
as a small perturbation on the steady flow which results in a




pair of boundary value problems for the steady and first order
unsteady perturbation potentials. The equation for the steady
flow is just the nonlinear small disturbance potential equa-
tion. The first order unsteady equation is linear, and for

the harmonic boundary disturbances considered, its reduced

wave equation form is of mixed elliptic/hyperbolic type depend-
ing upon the nature of the steady solution. Both steady and
unsteady equations are solved by the mixed differencing line
relaxation procedure first introduced for steady flows by
Murman and ColelO.

Since the approach and numerical solution procedure
have been reported in detail in the previous reportl, they are
but summarized in Section 2.0, with the addition of certain
generalizations to the basic method presented in that report.
These generalizations and extentions to treat higher order
frequency effects, supersonic freestream flows, wind tunnel
wall effects and three dimensional planar wing flows are pre-
sented in Section 3.0, along with jllustrative results. Sec-
tion 4.0 presents additional work concerning the accuracy,
convergence, and stability of the method. An attempt at veri-
fying the accuracy of the method for airfoils with practical
shape and unsteady amplitudes is presented in Section 5.0,
with comparisons of the present results_to those of an "exact”
numerical method? and experimental datal8,19, Detailed cal-
culated results for a NACA 64AC06 and 64A410 airfoil oscillat-
ing in pitch, plunge and control surface rotation in the Mach
number range 0.8 to 1.2 and reduced frequency range 0 to 0.2
are presented in Section 6.0. Mean airfoil angle of attack
and wind tunnel wall effects are briefly studied and the re-
sults presented in that section. The results for unsteady
aerodynamic coefficients are used in a three degree of freedom
flutter analysis and the results are discussed in section 7.0.
Finally, Section 8.0 summarizes study results and comments on
the current state of development of the method.




2.0 FORMULATION AND SOLUTION PROCEDURE

: Small disturbance theory is the principal analytical
tool for all speed ranges and has become increasingly impor-
tant in the transonic speed range in recent years. The gen-
eral theory including the unsteady small perturbation approach
used in this work is summarized in Section 2.1. Generaliia-
tions of the basic method, described in detail previously » 20
to include higher frequency effects and an extension of the
method to three dimensional planar flows are included in the
summary. The required numerical solution methods for the
steady and unsteady systems are described in Section 2.2

20 Small Perturbation Approach to Unsteady Transonic Flow
Y
' M<1
MOO
B st x
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FIGURE 1. SCHEMATIC OF AIRFOIL GEOMETRY AND TRANSONIC FLOWFIELD

The problem of interest is the flow about an airfoil
(two dimensional) or planar wing (three dimensional) oscil-
lating with various flexible or rigid body dearees of freedom
in the transonic speed range. The airfoil geometry, flowfield
schematic and coordinate definition are given in Figure 1
above. Rectangular coordinates (x,y,z) are fixed to the air-
foil leading edge with origin at the wing root and U, M_, a,
are the freestream velocity, Mach number and sound speed re-
spectively. The airfoil has a thickness ratio §, which is the
airfoil maximum thickness divided by its chord c, an angle of
attack a and a semi-span b, The assumption is made that §<<l
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and o is of the same order of magnitude as 6. Also, the os-
cillatory motion of the airfoil is assumed to be described
by a small non-dimensional displacement €<<$§ and a reduced
frequency k=wc/U based on airfoil chord where w is the fre-
quency of oscillation.

Assuming inviscid, isentropic flow, the problem can
be reduced to the solution of a single equation for a velo-
city potential plus the tangency boundary condition on the
airfoil surface. As is well known, the derivation of a small
disturbance theory for transonic flows requires a singular
perturbation approach. The following scaling is thereby
introduced:

1/3 1/3
% =%, 9= [(1+y)6M]] 7 = [(1+y)6M2) z

2
[ (1+y) SM2) £

2
Moo

and the total potential is expanded about the uniform flow:

2/3
v = Uck + >—IS 1,y $(X,F,2.8) + ...
[ (1+y)M}]

Retaining all terms of leading order in the total poteqtial
equation and boundary conditions results in the following
form for the unsteady small disturbance system.

(K=¢2) 2> + ¢§; F gz 2055 *
where the transonic similarity parameters are:

2
(1-M2) M2

K = ’ Q= k
[(1+y) 6M2) %/ [(1+y)6m2) 27




with boundary conditions:

iy ) ‘
. SN . (4)
ony=1%0 P f
zZ <b
[
E
% = ~ g =0 r
[¢i + % I 0, on y=0 a ki (5) ;
— GEESE O
$2 + &; +¢2 + 0 as %24y2422 » @ (6)

where £, 5 1is the unsteady airfoil shape function (Equation
(7) below) on the upper and lower surfaces respectively, and
where [] denotes a jump in the enclosed quantity between y = 0
and 0*. It is noted that the airfoil tangency boundary con-
dition (Equation 4) and the Kutta condition (Equation 5) are
applied in the small disturbance manner on y = 0.

The system of Equations 3-6 provides a formulation of
the unsteady airfoil problem in the non-linear domain, which
includes flowfields with shocks. Certain terms in the above
system are und rlined as they may be omitted for a low fre-
quency [kv0(82/2)] approximation. This approximation is in
fact used in most of the work presented in this report. The
treatment of higher frequency effects (use of underlined terms),
necessary for oscillations in plunge for example, is examined
in Section 3.1 with some comment as to the effect on the ac- -
curacy of the theory.

The low frequency approximation results in significant
numerical advantage when solved by a time depfgdent technique
as pointed out recently by Ballhaus and Lomax™~. Such approaches
to the solution of the above system have yet to be fully ex-
ploited for the unsteady aerodynamics problem.

The approach presented herein for solving the non-linear
system given above (Equations 3-6) is to expand the perturba-
tion potential function in terms of the unsteady boundary dis-
turbance e<<l, From this point on all tildas (v) will be




dropped with the understanding that all variables are scaled

variables., Harmonic boundary disturbances are explicitly
treated:

fix,2;t) = fo(x,z) + efe(x,z)eth

and the perturbation potential is expanded as follows:

¢(xIYIzlt) = ¢,°(x,y'2) e ¢’1(X,Y,Z)eint . (8)

Substituting this into the perturbation potential equation plus
boundary conditions and combining terms results in the follow-
ing pair of boundary value problems for ¢° and 9! respectively.
(¥n the following text, the superscript has been dropped from
$'.)

(R=02) 03, + 09 + &,

0 <
% = £'(x,2), ony =t 0
Y ° 0.£ z

(421 =0, ony=0 {*°*
0<szsb

2 2 2
(¢;) +(¢;) +(¢;) + 0 as x2+y?+z?

(K=02) 0, +0  +0,, = (0, 421000, + kAo = O

o, = fé+ikfe, ony =10 0<xs1
¥ 0<zsb

[¢x + 152] =0, ony=20 KTl
0sz<hb

2 2 2
(¢, +(¢y) +(¢,) > 0, as x2+y24ziam




System 9 is recognized as the usual formulation for steady
transonic flow and system 10 is the formulation for the un-
steady perturbation thereof. It is noted that the governing
equation for ¢ is linear but of the same mixed elliptic/
hyperbolic type as the steady solution. It is also noted that
¢ is in general complex thereby permitting phase shifts be-
tween field quantities and the boundary disturbance. As be-
fore, underlined terms in system 10 are neglected for a con-
sistent low frequency approximation. Also for two dimensional
airfoil sections, the z dependence on all quantities and the
¢zz terms in the equations are neglected,

The main physical quantities of interest are the pressure
coefficient and airfoil force coefficients. The pressure co-
efficient, defined in the usual manner, is given by:

62/3 10t
C,. B —=—viom—= (C® + €C ")
P raemi)t/t P P

where the steady and unsteady scaled pressure coefficients are
given to leading order ir the small disturbance approximation
by:

= -2(0, + ik¢) (12)

p

The formulations of the boundary value problems are
essentially complete with the exception of the practical matter
of setting the boundary conditions away from the airfoil, which
depends on the particular problem; subsonic or supersonic free
field, wind tunnel wall etc. Asymptotic far field solutions
to Equations 10 have been developed for two dimensional sub-
sonic or supersonic free air or wind tunnel flows and for three
dimensional subsonic flow. These solutions are described in
Section 3.0 as they apply to the various generalizations of the
method and are summarized for completeness in Appendix A.

22 Finite Difference Solution Method

The numerical solution procedure for the boundary value
problems for the steady and unsteady perturbation potential,
is based on the mixed differencing, line relaxation procedure




developed by Murman, Cole and Krupp15'16. They pointed out

the essential ingredient for the success of relaxation pro-
cedures for the steady transonic potential equation. The key
to the approach is to account for the local nature of the flow
(elliptic in subsonic regions, hyperbolic is supersonic regions)
in the finite difference approximation to the governing equa-
tions. The solution method used in the present work for the
steady perturbation potential, $°, is patterned %fter the method
for general lifting airfoils developed by Kruppl . Extensions
of this method for steady flows, to treat supersonic freestream
flows, wind tunnel wall effects and three dimensional flows are
presented in Section 3.0. The version of this technique im-
plemented for the two dimensional unsteady perturbation is de-
scribed here. Generalizations of the unsteady solution method

are likewise presented in Section 3.0.

The linearity of the governing equation for ¢ would
suggest that many of the powerful techniques of classical
analysis could be applied. The equation is seriously compli-
cated, however, by the fact that various coefficients are
functions of the nonlinear stéady potential, for which the
only general solution methods are numerical. In view of this
complication and the success of the mixed differencing relax-
ation procedure for the steady potential equation of similar
type, it was decided to use this same method to develop un-
steady solutions.

wake b.c,

j=1

FIGURE 2. ScHEMATIC OF NUMERICAL SOLUTION DoMAIN

-




Consider the boundary value proklem for the unsteady
transonic potential, with numerical solution domain indicated
schematically in Figure 2. 1In the numerical scheme, a rec-
tangular mesh with general grid line spacing is overlayed on
the solution field in physical x, y coordinates. Uneven grid
spacing makes it possible to concentrate grid points near the
airfoil slit and in regions where rapid changes in the po-
tential or its derivative (wing leading edge, shocks, etc.)
are expected and to expand the grid in a regular manner out
to the boundaries of the mesh. The required solution for .
which does not depend on ¢, is solved independently on the same
or a more refined grid and the resulting solution stored on
magnetic tape. The converged solution so obtained is then used
in the solution process for the corresponding ¢. This approach
has the benefit that ¢° need not be regenerated for each un-
steady boundary disturbance or reduced frequency of interest.

The local nature of the equation at each grid point is
determined by the corresponding value of (K-¢g) 3 § = Vi,q at
the same grid point. Then if K-¢¢ > 0 (ellipticf the x Aeriv-
atives of ¢ are center differenced and if K-¢4 < 0 (hyperbolic)
the x derivatives are backward differenced. Near the sonic
line at so-called "parabolic points," the center difference
form for the x derivatives of ¢ are used. The finite differ-
ence approximation to the unsteady potential equation are thus
summarized as follows:

ViLj > 0, elliptic

K (6. )E

Vs &2 S UL -
(¢ i,) Yy 1,J] (13)

j.4 Rk

)
L. : o E E . L
[21Q+(¢xx)i,j] N’x)i,j + k2 = 0

V. . < 0, hyperbolic

1,)
H E
i,j(¢xx)i,j (¢yy)i,j (14)
H
- 1210+ (04,07 ] (6x)i, 5 + K20 = 0

w10=




WA S Y > 0, parabolic

1,3 i-1,3

Vi.j(¢xx)?'j 3 Myy)Ei.j (15
~[210+ (0305 1 (0,07 4+ kA = 0
H

Where Vi, 5, Vi, j and the elliptic (superscript E) and hyper-
bolic (supérscript H) difference forms are centered or back-
ward differenced in the usual manner.

Using the above forms, the finite difference equations
are set up for each column (x = constant) in the grid. Appro-
priate finite difference approximations are made for the body
boundary condition, Kutta condition and farfield boundary to
effectively close the system of equations. The resulting
sequence of linear algebraic equations is solved by Gaussian
elimination. After each column is solved, it is reiaxed with
a variable relaxation factor, depending on the local nature of
the solution. This process is repeated for each column in turn,
sweeping the grid from left to right until the change in ¢ for
all grid points during one grid sweep is less than some arbi-
trary small amount. Iteration is also required on the unknown
airfoil circulation which is always over-relaxed and which is
updated along with the farfield at regular intervals. A grid-
halving routine has been implemented with considerable improve -
ment in the efficiency of the method. Complete details of the
differencing and treatment of body boundary condition, Kutta
conditions and farfield boundary conditions are presented in
References 1 and 20.
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3.0 GENERALIZATIONS OF THE METHOD

One of the main goals of the research reported here was
to generalize and extend the method and solution procedure to
treat higher frequency effects, supersonic freestream flows,
wind tunnel wall effects and three-dimensional planar wing
flows. Pertinent studies relating to these developments are
summarized in this section and typical calculated results are
presented. In particular, the development and implementation
of boundary conditions required ior the treatment of supersonic
freestream flows, wind tunnel flows and three dimensional sub-
sonic flows are discussed in this section and summarized in
Appendix A.

3l Higher Order Frequency Effects

The previous formulation of the unsteady flow problem
was restricted to low reduced frequencies k % 0(82/3) and as a
result did not include the effect of plunge (or the so-called
"piston pressure" component) since this is a second order
(0(k)) effect at low frequencies. As summarized in Section 2,
the formulation can be generalized to include higher frequency
effects and therefore explicitly treat the effect of plunging
motion on all unsteady modes. Since all previous results as
well as the unsteady results (for pitch and control surface mo-
tion) presented in this report used the consistent low frequen-
cy formulation, it is important to examine the effect of the
high frequency terms on the results for reduced frequencies up
to 'k *. .2

The generalization to the formulation is accomplished
by retaining the Yttt term in the full potential equation as
well as the unsteady terms in the airfoil boundary condition
and definition of pressure coefficient. There is some ques-
tion about the validity of the resulting small disturbance
equation (Equation 3) for general frequencies but it is ac-
cepted by most authors as the lowest order unsteady small
disturbance equation. Before proceeding with the linearized
unsteady perturbation analysis and the comparison of the low
frequency to the generalized results, it is instructive to
examine the governing equation in some detail to point out
the essential difference between the low frequency approxima-
tion and the present more general formulation.

=]2=




3.1.1 Characteristic Analysis of Governing Equation

The governing equation is classified as a quasi-linear
equation of hyperbolic type with the non-linearity concentrated
in the coefficient (K-¢2) of the ¢xx term. This coefficient
is essentially the deviation of the local flow velocity from
sonic-velocity and for the purposes of the following analysis
let K-¢% = V. For any point (x,y) in the two dimensional
physical plane the equation can be linearized in the usual
manner and is written as follows:

Vo, + oy =20, b0y =0 (16)

XX YY

It is noted that tildes have been dropped from all variables
with the understanding that they are scaled variables. The
hyperbolic nature of the equation as well as the essence of
the low frequency approximation can be made apparent by exam-
ining the "Monge cones" associated with the eguation at a
point. Introducing the following transformation:

£ = %
VLT (17)

T =Vt + X

the canonical form of Eg. (16) becomes:

+ - =
¢€€ ¢nn U ¢11 0 (18)
where
k
U—-l+§=z-V
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The characteristic lines in the (x,t) plane are given by the

section of the Monge cone in the (f,n) plane which from Eq.
(18) are:

JTJT £ = constant

or in x,t coordinates:

——

V|u|)x = constant

Advancing Wave

)

ac _ _ 1
dx v

\ —

—

Receding Wave

[ =l N g, o

——
—

FiGure 3. CHARACTERISTICS OF SMALL DISTURBANCE POTENTIAL
EQuATION -

The two families of characteristics at a subsonic (V > 0)
point are shown in Figure 3. They physically represent the
locus of the wavefronts fef'the upstream facing or "receding"
wave and the downstream facing or advancing wave. The slope
of each curve is the inverse of the wave speed in scaled coor-
dinates. It is noted that in the low frequency approximation
¥ = 1 so that the slope of the downstream characteristic is

0 and the advancing wave speed is infinite. Thus this approx-
imation effectively neglects the effect of the advancing wave;




the physical assumption being that the advancing waves move
rapidly away from the airfoil and therefore have a negligible
effect on the flow as compared to the receding wave which re-
mains in the neighborhood of the airfoil. It is noted_ that
. . . \

near a shock or compression through sonic velocity, V > 0 and
the slope of the upstream characteristic + = so that receding
waves from downstream of the sonic point accumulate at the
sonic point and can build up to large amplitude disturbances.
This phenomenon is responsible for the inherent nonlinearity
of transonic flow as described by Tandahl?,

As the reduced frequency increases, u becomes appre-
ciably greater than one so that the slope of the downstream
characteristic increases away from zero and the corresponding
advancing wave speed decreases. Thus the advancing wave be-
comes more important as the frequency increases, and could in
fact become equally important as the receding wave for reduced
frequencies of order 1. The generalized theory presented here
includes the receding wave and would therefore account for such
higher frequency effects.

One final note before leaving the characteristic analy-
sis concerns the genesis of the so-called "sonic theories".
It is noted that for very high frequencies (v + =) and for lo-
cal Mach number everywhere very close to sonic 1-Mx*0 or V-0
the upstream and downstream characteristics and in fact the
Monge cone coalesces to a single vertical line. 1In this case
the upstream or downstream communication through the ¢xx term
becomes negligible so that the governing equation reduces to
the linear equation:

k &
¢yy =20k T8 Ve &0

which for harmonic disturbances has a reduced wave equation
form:

The equation is parabolic and can be solved by classical meth-
ods leading to the theories valid for high frequency sonic flow.




3.1.2 Unsteady Perturbation Analysis

The development of the linearized unsteady perturba-
tion for the general unsteady small disturbance system pro-
ceeds in the same manner as described in detail for the low
frequency system in previous workl and as summarized in Sec-
tion 2. The resulting system of equations (Eq. 10) varies
from the low frequency theory by way of the addition of fre-
quency dependent terms in the governing equation, body bound-
ary condition and wake condition. The treatment of these
terms in the finite difference solution method is straight-
forward and they have been added to the computer programs
developed in the study as an option thereby facilitating the
comparison of the low frequency formulation to the present
formulation. Some comments are contained in this section
concerning the implementation of these various changes to the
method.

The governing equation for the unsteady perturbation
potential requires but the addition of the kQ¢ term which in-
cludes the advancing wave in the formulation. The term is
included in the finite difference equations in the obvious
manner. Of greater practical importance to the results of
airfoil pressures at low frequencies are the addition of un-
steady terms to the body boundary and wake condition and to
the definition for pressure coefficients. This is because
these terms directly affect the flow near the airfoil whereas
the modification to the field equation indirectly affects the
flow about the airfoil. For example, the new body boundary
condition is:

It is noted that the low frequency approximation neglects the
effect of boundary motion on the downwash including only the
effect of the quasi-steady change in airfoil slope. As noted
earlier, the pure plunging mode (f = -1) results in the null
solution (4=0) for the low frequency formulation but is in-
cluded in the present formulation. It is expected that the
addition of the plunge motion to the downwash at the wing will
have its greatest effect on the out of phase component (Im¢)
of the solution and should therefore affect the phase of the
resulting airfoil pressures. Based on the general form of the




body boundary conditions and definition of pressure coeffi-
cient (below) it is expected that this effect will be of
0(k) ]

The other change in the formulation involves addition
of the unsteady term to the equation for the small disturbance
pressure and the resulting effect that this has on the wake
condition. The equation for the unsteady component of the
scaled pressure coefficient is:

Ep -2(¢, + ik¢) (23)

Again, for low frequencies, the primary effect of the general-
ized formulation will be on the out of phase (Im Cp) component
of the pressure.

The Kutta condition requires that the jump in pressure
at, and downstream of, the airfoil trailing edge be zero:

[¢x + ikct]gf = no, + ik A¢

on y 0, x 21

where A¢ is the jump in potential across the wake. Eq.
can be solved explicitly to give:

= A¢te e1k(x-l)

¥ @ 22 1

where A¢te is the jump in potential at the trailing edge equal
to the airfoil circulation. It is recalled that in the low
frequency approximation A¢ = Adte so that this generalization
involves an oscillatory change in phase of the wake jump con-
dition due to the downstream facing wave.




The generalized forms for the body boundary condition
(Eq. 22) wake condition (Eq. 25) and pressure coefficient
(Eq. 23) are incorporated into the finite difference equa-
tions in an analogous fashion to the low frequency version
discussed in detail in Reference 1 and they need not be re-
peated here. The finite difference solution method also
proceeds in the same manner and the comparison calculations
presented in the next section indicate that the generaliza-
tions described here have little if any effect on convergence
or other numerical details of the scheme.

3.1.3 Results for the Generalized Formulation

Results are presented in this report using the low
frequency approximation for various unsteady modes of oscil-
lation and for reduced frequencies up to k = .2. It is ap-
propriate to verify the accuracy of these results in light
of the higher order frequency effects discussed above. To
this end, calculations have been performed for a flat plate
oscillating in pitch in a subsonic stream and for a NACA 64A410
airfoil oscillating in pitch and plunge at a supercritical Mach
number. Results for the low frequency formulation are compared
to the modified formulation and to results of alternate formu-
lations.

Results for the flat plate airfoil oscillating in pitch
[(fi=-1-ik(x-X )] at M,=.7 and a reduced frequency k = .2 are
presented in Figure 4. Distributions of the Real and Imaginary
parts of the jump in pressure coefficient across the airfoil
per unit angle of attack are shown. The results calculated by
the present method in its approximate low frequency and gener-
alized form are compared to the corresponding results calcu-
lated by the doublet-lattice method2l, The calculations are
for perturbations about a uniform (6° = 0) mean flow and the
generalized results should compare within numerical error to
the doublet-lattice results. Indeed, as shown in the figure,
the results of the high frequency formulation compare within
a few percent to the doublet-lattice solution. It should be
pointed out that the present method used 26 finite difference
. points on the airfoil and the doublet-lattice method used 25
chordwise boxes so that they are being compared on the same
basis in terms of numerical definition. Results using the
low freqguency approximation are also shown in Figure 4 and
they indicate the expected effect of the high frequency terms
on the out of phase component (Imaginary part) of the solution.

The corresponding results for a NACA 64A410 airfoil
with a mean angle of attack of 2 oscillating in pitch about

wlif=

-’




the leading edge at k = .2 are shown in Figures 5 and 6. Fig-
ure 5 presents the unsteady component of l1ift as a function of
angle of attack (or time) and Figure 6 gives the perturbed
pressure coefficient distribution over the airfoil. 1In Fig-
ure 5 the results of the low frequency and generalized fre-
quency formulation are compared to the "exact" numerical re-
sults of Magnus and Yoshihara® (see Section 5 for more details) .
Note that for an integrated quantity such as lift the higher
order frequency effects produce but a slight change in magni-
tude and phase. It is noted that both formulations compare
surprisingly well with the Magnus and Yoshihara results. The
comparison of pressure distributions in Figure 6 shows the
slight effect of the high frequency terms on the in-phase com-
ponent and a somewhat larger effect on the out of phase compo-
nent; similar to the result for the fully subsonic flow. As
an aside, a comparison of Figures 4 and 6 show the large tran-
sonic flow effect for an airfoil with a practical thickness,
camber and mean angle of attack. The comparison with the
Magnus and Yoshihara results given here and in Section 5 show
that the present theory, in either its low frequency approxi-
mate form or its general frequency form, model these non-
uniform flow effects. These strong transonic flow effects are
likewise shown in Figure 7 which presents results calculated
using the present method for the same NACA 64A410 oscillating
in uniform plunge at k = .2. A comparison of the perturbation
pressures due to pitch and plunge in Figures 6 and 7, respec-
tively show that for low frequencies, pressures and forces due
to plunge are, in magnitude, approximately 20 percent of the
pressure and forces due to pitch. This is consistent with

the estimate of higher order frequency effects which indicate
that such effects are O(k).

In summary, the generalizations of the low frequency
theory to include higher frequency effects, necessary for
the treatment of plunge oscillations, would seem to give an
accurate representation of such effects. The comparisons
presented here show that these effects are 0(k) in the low
frequency regime so that the generalized formulation should
be used for all unsteady modes for reduced frequencies as
large as k = .2. Since the high frequency terms do not seem
to degrade the efficiency, convergence or stability of the
numerical solution method, the generalized formulation pre-
sented here would seem to be recommended over the previous
low frequency formulation.
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3.2 Supersonic Freestream Calculations

The theory and numerical solution method described in
the report applies equally well to subsonic or supersonic
freestream flow. The application of the method to supersonic
flows, the subject of this section, requires that certain de-
tails of the method, in particular the treatment of the far-
field condition, be modified. This generalization has besg 23
accomplished for small disturbance steady flows by Murman<<’
and his approach is followed in the present work as summarized
in Section 3.2.1. Other details concerning the treatment of
steady supersonic flows which were considered during the pre-
sent research are also discussed in that section. The ana-
logous treatment of unsteady supersonic flows, the prime ob-
ject of this research, is discussed in Section 3.2.2.

3.2.1 Steady Flows With Supersonic Freestream

The primary generalization to the numerical solution
method for treating supersonic freestream flows involves the
derivation of a farfield boundary condition. The asymptotic
solution available for subsonic freestream flows (Appen-
dix A) clearly do not apply. Even if such a solution were
convenient to derive for supersonic flows, the application
of a Dirichlet boundary condition is not appropriate and
could lead to numerical difficulties for a hyperbolic far-
field flow. The method used here involves developing asymp-
totic approximations to the characteristic relations for the
hyperbolic form of the transonic potential equation (Eq. 9),
and to apply these relations as boundary conditions on the
far boundary of the grid.

Letting u = ¢ and v = ¢; the characteristic directions

and relations for th& two dimensional steady transonic poten-
tial equation are respectively:

+ (u-K) ¥ (26)

The characteristic relations can be immediately integrated
to give:

1/2 -
%(u~K) / Fvs= Rt, on g% = + (u-K) %




where R® are the Riemann invariants, It is noted that far
upstream the flow is uniform so that u=v=¢z0 as x»>-x. This
uniform flow condition provides the needed upstream boundary
condition which is applied as a Dirichlet condition on ¢.

In the transverse direction (y»*») away from the airfoil the
characteristic relations may be approximated under the as-
sumption that u<<-K. Expanding equation 27 for small u gives:

v +% /K u 4+ ji_ . a (28)
4v-K

It is noted that K<0 for supersonic freestream flow. For
y+t= the assumption is made that there is no disturbance at
upstream infinity (R=0) so that taking the first order ap-
proximation to the incoming characteristic relation gives:

as yrio (29)

Thus as long as the transverse boundaries of the finite dif-
ference grid are supersonic and far away from the airfoil
Equations 29 provide an accurate representation of the far-
field solution.

This boundary condition is incorporated into the
finite difference procedure in the same manner as the airfoil
boundary condition. That is, on the top and bottom of the
rectangular grid (¢§y)i . is differenced as a one-sided dif-
ference using Equation 53 in the finite difference equation.

For example on the top boundary (y=ymax):

¢° -9 . l
¢o = AZ ¢0 l'JA 1'3_1 for J:JM
YYi,5 Y341 ¥i,3 ¥5-1

With ¢ from equation 29 and the backward difference form
for ¢; (since the flow is supersonic):




-1 0 _40
ij—l (q)iij q)irj"l)

Using this relation in the finite difference analog to the
partial differential equation (Eq. 14 above) effectively

closes the system of equations for a collumn of grid points

and the solution proceeds as before. The downstream (x»+>) bound-
ary of the grid requires no special treatment, as long as the
flow there is supersonic, because of the lack of upstream in-
fluence in supersonic flow.

In order to illustrate the method, fully supersonic
results are presented in Figure 8 and 9 for a 6 percent thick
circular arc airfoil at M_ = 1.5 and a 0.5° wedge at M, = 2.0
respectively. The circular arc solution is compared to linear
supersonic theory which would be quite accurate for this case.
The calculation verifies the application of the method to
supersonic freestream flows and demonstrates that the tran-
sonic theory reduces to linearized supersonic theory for M_>>1.
The present solution shows a slight degree of nonlinearity in
this case as well as demonstrating the numerical smoothing of
the shock waves at the leading and trailing edge of the air-
foil. The wedge solution (Figure 9) was performed to verify
the accuracy of the scheme for very weak oblique shocks. Re-
sults for three grid designs with different values of Ay are
shown which indicate that the sharpness of the shock is strongly
dependent on grid design. The "overshoot" in the shock jumps
is most likely due to the extrapolation procedure used for de-
fining values of potential on the airfoil since it is not evi-
dent in the shock jumps away from the airfoil. The overshoot
is also dependent on the strength of the shock as shown by the
result for a stronger oblique shock in Figure 10. For this
case with an order of magnitude stronger shock no overshoot
is evident. It is also noted that the overshoot can be largely
elliminated even for the weak shock case by the proper choice
of Ay in the first grid point above the airfoil. This indi-
cates that a more intelligent extrapolation method for defin-
ing the solution on the body, such as, for example, extrapola-
tion along characterisitics (Eq. 26), would also elliminate
the overshoot.




To examine the accuracy of the basic hyperbolic dif-
ferencing scheme, a general higher order finite difference
form has been implemented on a trial basis. The method uses
an additional upstream point for the finite difference forms
for ¢; and ¢;x:

2 AX. ¥ =

0_40 0 —rh 0
O ey YT RG 0 Vi ¢i—2}
i-1 i-2

(1) §93-1703-2  1a¢%s
2 I Ax Ax

i-1 i-3

il leendian 837031 %3-1701-p
b5, S Ax . +Axi,_2 Ax Ax.

185 i=3 i=1 i-2

201-y)  J04o19%p  #1pmis %

A

Xi-2 ®i=3

Bx, _,+Bx; . l A

For v=1 the scheme reduces to that presently used and for

v=0 it is a second order accurate hyperbolic scheme after
Richtmeyer and Morton23. Results for the 2° wedge with M_=
1.25 are shown for v=0 and v=1 in Figure 10 for comparison.
Both methods give the same shock jump and differ only in the
sharpness of the shock. This comparison indicates that the
three point scheme used in this work is quite accurate and

in fact gives sharper shock waves than higher order accurate
difference schemes. Figure 10 also shows the solution away
from the surface (at ¥y = .2 and .4) which indicates that ob-
lique shock waves away from the surface undergo considerable
numerical smoothing. Note, however, that the shock jump con-
dition is retained. The degree of shock smearing indicated
is an attendent result of any shock capturing numerical method
and can probably be elliminated only by using shock fitting;
a rather complicaied prospect for general transonic flows.




As described in previous work1 and summarized in
Section 2, the numerical solution method takes no special
account of shock waves. As shown in the above results the
procedure is adequate for oblique shocks, but as recently
pointed out by Murman 4, the treatment of strong shocks
(supersonic to subsonic transition) is inaccurate. The ac-
curacy of the method can however be improved by using a
special "shock point operator" (SPO) as suggested by Murman
or by usin? shock fitting, as implemented recently by Cheng
and Hafez25. Since strong shocks are important for transonic
flows, especially low supersonic flows, it was decided to
implement a form of Murman's shock point operator.

A shock point in the finite difference approximation
to the transonic potential equation is defined as a point

(i,j) when (K=-63); .<0 and (K=¢g); At such a point,

2 >0
the finite differen%éjequation is geﬂgralized to:

b c
e + ¢° =0 (34)
e AL

4% 0 C _4 0D
a (K ¢x)i,j¢xxi ; + B(K ¢x)i,j

where superscripts b and ¢ indicate backward and central
differencing. Murman suggests a=p=1 as the form which pro-
vides a "conservative" finite difference scheme. However,
as can easily be seen (and as noted by Murman) this is in-
consistent with the governing equation to O(Ax). 1In the
present work it was decided to use a=1/2, B=1/2 which retains
the consistency of the finite difference approximation to
the transonic potential equation but is nonconservative by
Murman's definition to O(Ax). This form was chosen because
consistency is believed to be of utmost importance and also
since the conservation property of the finite difference
scheme depends upon the definition of the variation of a
quantity over the sides of a finite difference cell. This
can clearly only be defined to first order especially near
a shock. 1In short it is felt that the shock point differ-
encing used is consistent with the formalism of shock cap-
turing and could only be improved by shock fitting.

Results using the shock point formalism are shown in
Figures 11,12, and 13 at the end of the section. Figure 11
presents the pressure coefficient along the axis for a éire=
cular arc airfoil at M_ = 1.15. Results calculated with
and without the SPO are presented and show the important ef-
facts on the shock jump and stand-off distance. It is inter-
esting to note that the pressure coefficient on the airfoil

(x/c>0) is curiously unaffected by the treatment of the shock.
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Results calculated with a=1, B=1 (as per Murman) are indis-
tinguishable from the SPO result shown in the figure. It is
noted that the use of the SPO also seems to have a beneficial
effect on the convergence of the iteration procedure.

Figure 12, and 13 are presented to demonstrate the
application of the final developed method for supersonic
freestream flows to practical airfoils of interest in the
present work. The figures give the airfoil pressure dis-
tribution for a sharp leading edge, 6 percent thick circular
arc airfoil at M, =1.25 and 1,15 and a blunt leading edge
NACA64A006 at Mw=1.5 and 1.2 respectively. The figures show
the expected non-linear transonic results and in the case of
the NACA64A006 (Figure 13) shows the development of and move-
ment away from the airfoil of the detached bow shock as free-
stream Mach number approaches Mach 1.
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3.2.2 Unsteady Flows With a Supersonic Freestream

The extension of the unsteady perturbation method to
flows with supersonic freestreams proceeds in an analogous
manner to the steady flow case just discussed. The main
generalization involves the development and implementation
of a farfield boundary condition for the numerical solution
scheme. As in the steady case, a characteristic condition
is developed which is valid far from the airfoil. To this
end, consider the governing equation for the unsteady per-
turbation potential written in the following form:

R | : 0
= (2i0¢+620,,)
|k x
where it is noted that K<0 for supersonic freestream flow.
Introducing the characteristic coordinates:

=x +JI[K| y

=x - J|K| y

Equation (35) can be written in the following canonical form:

3%¢ _ 1 : 0 : 0 (37)
3EaN - - m {(219¢+¢X¢X)€+ (219¢+¢x¢x) n}

Integrating along the £ and n characteristics in turn results
in the characteristic relations:

3¢ _ 1 1 - 1 ! 0
99 = (¢ + == ¢_) = = —— 12100+ ¢ )
3E 2 'x \/TKI b 4|K| { %

+/(2m¢+¢;¢>x) dn}
g




and

1 1 1 . 0
(¢, = 7= ¢_) = -—— {(2i0¢+_0,)
5. 4 TH fﬁa‘ y 41K| { X'xX

(39)

+ f(2m¢+¢;¢x)ndg

on ¥ - 2L

dx JTET

As before upstream infinity x+-«» is considered a region of
uniform flow so that ¢=¢,=0 and this is used to set an up-
stream boundary condition on ¢. On the top and bottom of

the grid the characteristic condition valid along incoming
characteristics given by Equations 38 and 39 are used. Under
the assumption that these boundaries are far from the airfoil
and using the fact that the incoming characteristic originates

in a region of uniform flow, the integrals in the character-
istic equations may be neglected so that:

| 1 - 0
6, = TWIK] 6, + —=— (2i06+6%6_)
Y \ s fTET XX }

(40)
as y+tm

These boundary conditions are incorporated into the
finite difference procedure by using a one sided difference
form for ¢yy at the top and bottom of the grid with the re-

quired value of oy given by Equation 40. For example at the
top boundary:

-36~




As before the x derivatives of ¢° and ¢ are backward differ-

enced since the boundary points are required to be supersonic
for this boundary condition to apply. The use of Equation 41
and an analogous equation for the bottom boundary effectively
closes the system of equations for a column of grid points.

Figqures 14 and 15 below are presented to illustrate
the application of the method to fully supersonic flows and
low supersonic flow (mixed flow) respectively. Figure 14
presents results for change in pressure coefficient per unit
quasi-steady (k=0) deflection in pitch (fi=-1) for a flat
plate (uniform mean flow $°=0) and for a circular arc air-
foil both at M, ,=1.5. The flat plate result should compare
identically with supersonic linear theory which is also shown
in the fiqure. As shown, the present flat plate result com-
pares very well with linear theory with the exception of some
smoothing of the centered expansion wave at the leading edge
and the shock wave at the trailing edge. The present theory
also shows a tendency to overexpand the flow at the leading
edge which is believed due to the extrapolation procedure
discussed above for the steady flow. The circular arc results
(Figure 14) and results for a NACA64A006 airfoil (Figure 15)
are calculated as quasi-steady (k=0) pitch perturbations to
the non-uniform steady solutions presented in Section 3.2.1.
The circular arc results show an appreciable non-uniform flow
effect even for a fully supersonic flow of Mo=1.5. As ex-
pected, this effect is shown to be even greater in Figure 15
for the NACA airfoil at a low supersonic Mach number (Mw=1.2)
In this case it is recalled that the steady flow is subsonic
near the leading edge which is responsible for the leading
edge singularity in the perturbation pressure coefficient
shown in Figure 15.

The results presented here demonstrate the applica-
tion of the present method to supersonic flow and verify that
the method reduces to linear supersonic theory for M, >>1.

The method also seems to give a reasonable description of the
transonic non-uniform flow effects and this is amplified upon
in later sections of the report.
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3385 Wind Tunnel Wall Effects

wind tunnel wall interference effects are extremely
important for steady transonic flows and because of possikble
resonance effects are potentially even more important for un-
steady flows. The inclusion of such effectsiin any theory
such as the present one clearly enhances the utility of the
theory for purposes of comparing with experimental data. Re-
cent attempts have been made by Murman26, Kacprzynski27 and
Collins and Krupp to evaluate wind tunnel wall effects for
steady transonic flows, and an initial attempt at including
such effects in the present steady and unsteady theories is
described in this section.

plenum chamber i
ST T S

Yol

- c —i |

porous or solid wall |

ISP

FiGURE 16. ScHEMATIC OF WIND TUNNEL CONFIGURATION

A general two-dimensional wind tunnel test configura-
tion is sketched in Figure 16 above. It is assumed that the
airfoil is on the tunnel centerline and that the solid or
porous wind tunnel walls are separated by a distance h. The
treatment of such a configuration by the present numerical
method requires the inclusion of a proper wall boundary con-
dition in the finite difference mesh at the scaled location
of the walls and the development of a farfield solution for
fixing a boundary condition on the upstream and downstream
boundaries of the grid.

The treatment of upstream and downstream boundaries
follows from the same general method as used for free air flows
and is described in some detail in Appendix A. As summarized
there, an asymptotic solution has been derived by the method
of images for a general lifting airfoil in a steady subsonic
flow for the solid wall case. This solution is believed to
be accurate, and is also used for the case of small wall
porosities. This solution is thus used to fix a Dirichlet
boundary condition for ¢° on the streamwise boundaries of
the finite difference grid (i=1 and i=IM). No corresponding
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solution for the unsteady potential has been developea; how-
ever the steady solution (which applies for the unsteady per-
turbation potential for k=0) indicates that to leading order
¢ is exponentially small as x->i«. Thus a zero gradient con-
dition ¢.,20 is imposed on i=l and IM for all unsteady cases.
This shoild be accurate for the low frequency unsteady flows
considered and the adequacy of the approximation has been
verified for the quasi-steady case. Supersonic wind tuanel
flows can also be treated by the method and in this case the
zero gradient upstream and downstream condition is imposed
for both steady and unsteady solutions.

Of more immediate importance to the numerical simulation
of wall interference effects is the treatment of the wall bound-
ary condition for general porous oOr slotted walls. The solid
wall case_can be considered as a trivial special case (¢, = O
ony =+ h/2). Analytical modeling of ventilated wind tunnels
is a subject as rich in problems and non-linear effects as the
transonic flow problem itself. Kacprzynski has in fact
pointed out that the characteristics of porous or slotted walls
can be highly dependent on flow Mach number and Reynolds number
in addition to wall construction. Since the primary purpose
of the present work is to demonstrate the capability of the
method to treat wall effects it was decided to restrict the
initial effort to the simplest possible model. As a result,
the wall boundary condition is treated as the first order (lin-
ear) relation between the perturbation velocity normal to the
wall and the local pressure coefficient, assuming the plenum
pressure is equal to the freestream static pressure. The follow-
ing equations hold for the steady and unsteady perturbations
respectively:

¢; = ¥ Poy , ony=1 % (42)
&= E j . ﬁ
by = 7 belfr (o+ik®) , ony=1%3 (43)
where the scaled tunnel height is:
) 5 1/3 h
h = [(1+8) Mg = (44)

and where B is the wall porosity factor (p = 0 for solid wall)
and B, is introduced to permit a phase lag between the flow
pressure and normal velocity in the unsteady case. The bound-
ary conditions are introduced into the finite difference pro-=
cedure using one sided difference forms for ¢yy on the upper
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and lower wall boundaries in the same manner as the body bound-
ary condition and as described for the supersonic farfield
condition above.

It is not immediately obvious how P is to be estimated.
Kacprzynski2? points out that it could be a non-linear function
of pressure (or ¢y) and that P could be different for flow into
or out of the plenum. In any event, one rational estimate for
P can be derived by assuming that the boundary condition is the
weighted average of a free jet and a solid wall where the weight-
ing factors are the open area ratio, S, or 1-S respectively. In
scaled parameters:

§2/3 y .
u = s )6M2]1/3 b = O (free jet) (45)
+y)SM_

and

v=6U ¢y = 0 (solid wall) (46)

where u and v are the streamwise and transverse perturbation
velocity components. Taking the weighted average gives:

S 1
by = T ¢ (47)
y T TS paepema T

B

To demonstrate the method, steady and quasi-steady (x=0)
results are presented in Figures 17 and 18 respectively for the
NACA 64A006 airfoil at Me = .85. The tunnel parameters are taken
to match the NLR Pilot tunnell? since the data presented in Sec-
tions 5.0 and 6.0 below were measured there. This tunnel has
slotted wall with a 10% open_area ratio so that for the test
configurations at M, = .85, h = 1.44 and P = .24 based on equa-
tions (44) and (47) respectively. The steady results for air-
foil pressure distribution (Figure 17) show the main effect of
the solid or porous walls to be an acceleration of the flow over
the airfoil in comparison to the free air solution also shown.
This results in an aft movement of and a corresponding strength-
ening of the shock, It is noted that the porous wall solution
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is not very different than the solid wall solution indicating
that, for this case at least, the porosity is not sufficient

to model free air conditions. Figure 18 presents the jump in
pressure coefficient per unit flap angle for a quasi-steady

(k=0) flap deflection calculated as linearized perturbations

to the steady solutions just described. The results for the
solid and porous wall are compared to the corresponding free

air solution and test results from Reference 19. The results
show that effect of the walls is to strengthen the perturbation
through the shock and to significantly decrease the pressure
perturbation on the non-deflecting forward portion of the airfoil
The comparison of the theoretical results show that the wall sig-
nificantly decreases the upstream influence from the flap to the
forward portion of the airfoil. Although the wall solutions

do not improve the comparison with the data they do indicate

that appreciable wall effects are acting for this test config-

uration. Additional unsteady results with wall effect are pre-
sented in Section 6.0.
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3.4 Three Dimensional Planar Wing Calculations

S
céb ;::?“)phh
<

Ficure 19, SCHEMATIC OF THREE-DIMENSIONAL PLANAR WING

The application of the theory and solution method to
two-dimensional airfoil sections presented in previous work
and inthis report are interesting and illustrative but for
practical application to dynamics or flutter problems three-
dimensional effects must be considered. As with most other
effects, Deffects are more important at transonic speeds than
in the other speed ranges. The efficiency of the present scheme
is such that realistic three-dimensional computations are prac-
tical on modern computers and it is the purpose of this section
to describe the required generalizations and tc demr nstrate the
method for a simple planform.

The wing parameters and coordinate definition are de-
fined schematically in Figure 19 above. The initial develop-
ment of the method is restricted to rectangular planforms un-
dergoing oscillations symmetric with respect to the wing root
(z = 0). The small disturbance analysis and the unsteady per-
turbation theory valid for three-dimensional flows were de-
scribed in Section 2. As indicated there, the generalization
to three dimensions requires but the addition of the ¢z term
to the governing equations for the steady and unsteady pertur-
bation potentials. Asymptotic solutions to the governing
equations have been derived for lifting wings in subsonic free-
stream flow by Klunker?d, for the steady flow, and by the pre-
sent authors for the unsteady perturbation. These solutions
are summarized in Appendix A and used in the numerical solution
method to fix farfield boundary conditions. Three dimensional

solutions for steady transonic flow have been presented by
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Bailey and Steger30 and Newman and Klunker3l; the latter work
being most closely related to the method for steady flows
used in this work. Extensions of the solution method for the

unsteady perturbation parallel the steady method and are now
described.

3.4.1 Numerical Solution Method

Y, 3
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FiGURE 20. ScHEMATIC OF NUMERICAL SoLuTioN DOMAIN

k=KM

The three-dimensional numerical scheme constitutes the
most straightforward extension of the two-dimensional method
previously described in detail in Reference 1. As shown sche-
matically in Figure 20, a cubic rectangular mesh of finite ex-
tent with uneven grid line spacing is overlayed on the 3-D so-
lution space. The grid is concentrated near the airfoil and
expanded out to the far boundaries of the grid. The finite
difference equations_are identical to the corresponding two-
dimensional versions! with the addition of a centered differ-

ence form for ¢zz given by:
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FicUrRe 21. ScHEMATIC OF DIFFERENCE SCHEME

The computational star for the three dimensional scheme
is shown schematically in Figure 21 above. The tests for the
elliptic on hyperbolic nature of the equation are made on the
centered difference form of (K-¢%). . ,, and depending on the
value of this coefficient the x 5e%136§ives of ¢ are centered
or backward differenced as in the 2-D case. A parabolic point
operator is used in both the steady and unsteady schemes and a
shock point operator, as described for the 2-D case in Sec-
tion 3.2, is used in the finite difference scheme for the steady
potential.

As before, the finite difference equations are set up for
each column (x,z = constants) in turn, taking account of the




airfoil, wake and farfield boundary conditions. In the steady

solution this results in a set of quadratic equations for the

¢ column of ¢'s which are solved by linearizing and iterating.
The linearization is accomplished by using the previous iter-
ate for the coefficient V=K- ¢x. The resulting linear sys-
tem is tri-diagonal and is solved by optimum Gaussian ellimin-
ation. The column jteration process is terminated when the dif-
ference between successive iterates is less than an arbitrary
small amount (usually 10-5). As in the 2-D case, convergence
is usually achieved in three or four iterations. In the un-

t steady solution it is recalled that the equation is linear soO
that no column jteration is required.

After each column is solved, it is relaxed using a var-
jable relaxation factor which depends on the local nature of
the equation; w " 1.7 for elliptic points and w "V .7 for hyper-
] pbolic points. The column solution process is performed for

each column in turn sweeping the grid from left to right in X
and from the wing root (k = 1) to the farfield (k = KM) in z.
The entire grid is swept repeatedly in this manner until the
change in ¢ for all grid points during one grid sweep is less
: than some arbitrary small amount.

The numerical treatment of airfoil and wake boundary
conditions in both steady and unsteady cases is the same as
the 2-D case with the exception that the airfoil shape func-
tion is now a function of z as well as x and the airfoil cir-
culation is a function of z along the airfoil. In the subsonic
freestream case considered to date, asymptotic solutions for
the steady and unsteady systems described in Appendix A are
used to fix a pirichlet boundary condition on five sides of
the grid. On the grid boundary containing the wing root, &
symmetry poundary condition is used whereby ¢z = 0onz=0-.
The farfield solution depends on the spanwise distribution of
circulation and as the solution for circulation is refined
the farfield is updated periodically during the solution pro-
cess.

The solution process summarized above has worked well
i in the few cases calculated to date. convergence, for in-
stance, seems to be comparable to the two-dimensional method
as will be discussed in the description of the steady and un-
steady demonstration calculations presented in the next sec~
tion.

i 3.4.2 Results for Low Aspect Ratio Rectangular planform

To demonstrate the three-dimensional applications of
the method, results are presented in this section for a
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rectangular planform wing with a constant six percent thick
circular arc section and with aspect ratio 2b/c=8, A grid
of approximately 12000 points was used with IM=30 over

-3.2 < x < 3.4, JM=19 over -5.4 < y £ 5.4 and KM=19 over

0 <2z < 6.8. In the x direction 16 grid lines were distri-
buted along the airfoil with Ax=.06, and in the 2 direction
10 grid lines were distributed over the span with Az=,2.
The grid design was chosen so that the unsteady version of
the program, which requires three times the grid point stor-
age of the steady program (6°, Re ¢ and Im ¢), would fit on
small core of the CDC 7600 (v64K storage).

Results for the steady airfoil pressure distribution
at various spanwise stations are presented in Figure 22 be-
low for the airfoil described above at a supercritical Mach
number of M.=.86 and zero angle of attack. The correspond-
ing two-dimensional results for the same airfoil, Mach number
and (x,y) grid design, are shown for comparison. It is noted
that the pressure distributions for the inboard 50 percent of
the semi-span are only slightly lower than the two-dimensional
solution indicating very little spanwise relaxation of the
flow in this region. The pressure.does not begin to change
significantly until the final 25 percent of the semi-span near
the tip. The 75 percent station, for example, shows some weak-
ening and forward translation of the shock but the flow does
not become entirely subcritical until very near the tip sta-
tion. All in all, the solution shows a lesser degree of three
dimensionality than might be expected for this case.

Results for the linearized unsteady perturbations about
the steady solution just described are presented in Figure 23
and 24 for a uniform pitch oscillation at k=0 and k= 1, ro-
spectively. In each case the corresponding two-dimensional
solution is also shown. These results for the jump in pressure
across the airfoil per unit pitch angle show the expected
greater degree of three dimensional effects than the steady
solution. Of particular note is the fact that the root sta-
tion in each case is considerably different in magnitude than
the 2-D solution. This is especially true of the quasi-steady
result (Figure 23). It seems that the main effect of the
three dimensionality is in depressing the peak suction through
the shock, although it also has a considerable effect on the
phase of the pressure distribution as indicated in the rela-
tively large changes in Im(ACp,) on the aft portion of the air-
foil in the k=.1 case (Figure %4). It should be noted that
the results show some residual loading on the airfoil at the
tip station due to discretization which presumably could be
reduced by using a finer mesh near the tip. Finally, Figure 25
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gives the span-wise loading distributions for each of the 3-D
cases with comparison to the corresponding two-dimensional re-
sult. A comparison of the Re(Cgp,) in each case indicates the
important result that the reduced frequency effect in this

low frequency regime is considerably less in the 3-D case than
in the 2-D case. Such a result could have important conse-
quences for a flutter or dynamic stability analysis for which
the variation of unsteady force coefficients with reduced fre-
quency can have a significant effect on the results.

Some comment with respect to computer run times for
the cases presented here is clearly of interest. The stgady
computation was taken to a convergence of A¢°’pax™5.0*107
which required 157 full grid iterations and was performed in
a total of 65 seconds on a CDC 7600. The quasi-steady per-
turbation required 286 grid iterations and 185 seconds of CDC
7600 time to reach a convergence of A¢max=10'5. Such a fine
degree of convergence is not required for acceptable accuracy
and it is noted that the same case reached A¢max=10-4 in 150
iterations and 82 seconds of 7600 time. Convergence and com-
puter run time for the fully unsteady k=.l case were similar
to (but less than) the k=0 case.

Although somewhat greater definition (more grid points)
is called for than was used in these demonstration calculations,
the computer time requirements mentioned here indicate that
the method is efficient enough to permit flutter aerodynamic
calculations for three-dimensional planar wings. The three
dimensional versions of the programs which implement the
method discussed above for the steady and unsteady perturba-
tion potentials are described in some detail in a companion
users manual to this report. The method as presently program-
med applies to rectangular planform wings in subsonic free-
stream flow but the programs could be easily generalized to
treat supersonic or wind tunnel flows. The generalization to
tapered and swept wings is the next major generalization which
could be effected to significantly enhance the usefulness of
the method.
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4.0 NUMERICAL ACCURACY, CONVERGENCE AND STABILITY
CONSIDERATIONS

Before proceeding with the large number of calcula-
tions presented for verification of the method (Section 5)
and for the flutter aerodynamics (Section 6) the numerical
accuracy and convergence of the method was investigated in
hopes of defining a grid and degree of convergence which
would strike a happy medium between accuracy and efficiency.
Also, attempts were made to speed convergence through the
optimization of relaxation parameters and the use of standard
matrix solution acceleration schemes. These studies are sum-
marized in Sections 4.1 and 4.2. Studies of the stability
of the numerical scheme have been performed throughout the
research and especially upon discovering that an instability
may develop for a combination of freestream Mach numbers near
sonic and high reduced frequencies. Some salient results are
summarized in Section 4.3.

4.1 Numerical Accuracy Considerations

In any finite difference solution technique, numerical
accuracy is often as important as the accuracy of the basic
theory upon which the method is based. The ultimate test of
numerical accuracy is, of course, comparison with exact solu-
tions for the same governing equations. Suie comparisons have
been made for the steady solution method13. and these have
demonstrated the accuracy of the mixed differencing line re-
laxation scheme for steady flows. Similar comparisons have
been made for the present unsteady method in Section 4 for
the special cases of linearized subsonic and supersonic flow
and have indicated that the solution method is basically ac-
curate for these relatively simple flows. It is unfortunate
that no exact solutions are available for unsteady flow at
supercritical Mach numbers. In this case, however, certain
numerical tests can be performed which provide a measure of
numerical accuracy and some results of such tests are pre-
sented here.

The accuracy of the numerical schemes for both the
steady and unsteady perturbation potentials used in this work
depend on many variables. Two of the most important are the
degree of convergence of the iterative relaxation procedure
and grid design and definition. Their effect on the accuracy
of the steady and unsteady solution methods are examined in
Figure 26 through 29 and Figure 30 and 31 respectively.
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Figure 26 shows a typical convergence history for a super-
critical steady flow calculation. The parameters plotted
versus the number of iterations are the maximum change in ¢°
throughout the grid, (A¢pmax) the change in airfoil circula-

: tion (Ayte) and the change in the non-uniform flow doublet
distribution (AD) per iteration, where:

2
D = f[ (¢,°‘) d&dn (49)
d

gr

These parameters provide a good measure of the degree to which
the solution has converged. For example based on these curves
the asymptotic convergence rate for each parameter can be de-
fined and used to estimate the error, for example (¢R-¢=),
which can be expected if the iteration procedure is terminated
after N iterations. This has been done in this case assuming
the iteration procedure was terminated when ApRax=10"4 (N=150)
and the results are to a conservative estimate:

1030 - 021 < 1.1%107
-3
- *
|Y150 Yool < .9*%10
-4
19150 = Pl < 2.0%10

Thus based on this result it is estimated that ¢° throughout
the grid has approached its limiting value to within 0.11%;
likewise the airfoil 1lift. This is clearly more than accept-
able accuracy for the calculation of unsteady aerodynamic
coefficients for example; the prime purpose of the present
work.

Figure 27 presents another measure of accuracy for
this same case. Presented there is the distribution over the
airfoil of the change in pressure coefficient due to change
in the degree of convergence from A¢max=10‘4 to Admax=10"".
All values shown in the figure are less than 1% of the cor-
responding values of pressure coefficient. This in fact is
a more vigorous test of accuracy than considering the values
of ¢° since Cpvo3vA¢/Ax. Thus even though the error in ¢°(A¢)
is less than .1% the error in Cyp could be larger due to the
small grid size on the airfoil, This figure shows the

=BT

S e b Sl



interesting fact that the approximate error in C, follows the
samo general distribution over the airfoil as the pressure
distribution; with the error being greater, as might be ex-
pected, near the leading edge and at the shock.

It should be pointed out that the case considered is
quite typical of all supercritical cases for which the con-
vergence has been examined in this manner. The main result
of such investigations is that a degree of convergence of
Admax™10~-4 should be more than sufficient to provide 1% ac-
curacy for airfoil pressures and integrated forces.

The effect of grid size or definition on solution ac-
curacy is indicated in Figures 28 and 29. Figure 28 presents
results for the pressure distribution for a NACA64A006 airfoil
at Mw=.875 using two different grid definitions: a coarse grid
(25x%25) with 12 grid lines on the airfoil and a more refined
grid (50x50) with 26 grid lines on the airfoil. Each grid was
taken to the same degree of convergence (A¢pax=10-4) and the
results show a relatively large difference. The comparison
with the experimental data (Tijdeman et all9, see Section 5)
is quite good, however, for the refined grid so that no fur-
ther grid refinement was used in this case. The effect of an
even more refined grid is shown in Fiqgure 29 for a circular
arc airfoil. As indicated there, the effect of such a highly
refined grid is mainly to sharpen up the shock. The effect
on the pressure distribution away from the shock is negligible.
It is believed that the same sharpening of the shock could be
attained by concentrating grid lines near the expected shock
position rather than refining the entire grid. However, in
the present work a grid which provided acceptable accuracy
over a wide range of Mach numbers was required for efficiency
so that such a strategy for sharpening the shock could not
be used in general. Based on comparisons, such as these, it
is believed that a grid with approximately 50 points in each
of the x and y directions will provide acceptable accuracy.

The corresponding effect of degree of convergence on
the unsteady scheme is shown in Figures 30 and 31. The case
considered is the NACA64A410 airfoil at M,=.72 with a quasi-
steady pitch deflection. The convergence histories for A¢pay
and Ay in Figure 30 are of a somewhat different nature than
the correspondina steady results as they show a relatively
constant rate of convergence most likely due to the linearity
of the governing equations. Based on the asymptotic conver- 1
gence history, conservative estimates for the error in ¢ and Y
if the iteration process is terminated at A¢max=10‘4 are:

5.%10°4
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Again the error would seem to be acceptable for a degree of
convergence of A¢max=10'4. The corresponding changes in per=
turbation pressures on the airfoil due to a change in conver-
gence from Adp,x=10"4 to A¢max=10"> are shown in Figure 31.
The distribution is shown to be somewhat erratic but in each
case the change is no more than 2% of the local value of C
with the least converged pressures being at the leading P
edge and in the region of the shock. The effects of grid
definition on the unsteady perturbations are very similar to
those shown for the steady solution. That is, the major ef-
fect of a finer grid than 50 x 50 is increased definition of
perturbation pressures through the shock.

In summary, studies of numerical accuracy as briefly
examined here, indicate that a 50 x 50 grid taken to a con-
vergence level of A¢max=10'4 provides approximately 1% ac-
curacy in both stead<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>